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Flow dissipation effects in a nonlinear nematic fiber
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Dissipative effects due to the presence of hydrodynamic flow in a cylindrical fiber whose cladding is an
initially quiescent incompressible nematic liquid crystal are analyzed. An analytic and iterative solution of the
nematodynamic equations coupled to the Maxwell’s equations describing the propagation of a narrow wave
packet of transverse magnetic modes is provided. We derive a generalized nonlinear Schro¨edinger equation for
the amplitude of this propagating wave packet that takes into account the dissipation in the nematic’s reorien-
tation and the hydrodynamical effects. For the solitonlike solution of this equation we find that the penetration
length and the real part of the nonlinear refraction index increase by a factor of 1.75, with respect to those
values obtained in the absence of hydrodynamical flow. The imaginary part remains unaltered.
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The presence of hydrodynamic flow leads to a dynam
anisotropic response of liquid crystals which manifests its
as an effective wave number dependent orientational vis
ity @1–3#, but its effect on nonlinear optical properties h
been less explored. In previous work it has been shown
light induced hydrodynamical motion of a liquid crystal co
fined in a planar cell, may also produce significant chan
in optical properties such as the focal length of the equi
lent nonlinear lens and the nonlinear phase change acros
cell @4–6#.

The lossy and nonlocal effects of the reorientation dyna
ics of the director when a wave packet of transverse m
netic modes~TM! propagates through a nematic cylindric
fiber in the absence of hydrodynamic flow have been a
lyzed by using the multiple scales method@7–9#. It has been
shown that the dissipation produced by the reorientation
ters the self-focussing, dispersion and diffraction of t
wavepacket, leading to a perturbed nonlinear Schro¨dinger
equation~GNLS! for its amplitude@7#. Since it is known that
the GNLS equation admits solitonlike solutions@10#, the
speed, time, and length scales, and penetration length o
optical solitons, as well as the nonlinear index of refract
of the nematic, could be estimated by using experime
values of the relevant parameters@11#. Our purpose in this
paper is to describe how the dissipation due to a hydro
namical flow of the nematic within the fiber affects the pe
etration length of the wave packet and the nonlinear refr
tion index of the nematic.

We consider a cylindrical waveguide of lengthL with an
isotropic core of radiusa with dielectric constantec , and a
quiescent, incompressible nematic liquid crystal cladding
radiusb, such thatL@a,b. The orientational configuration
satisfies the planar axial, boundary strong-anchoring co
tions n̂(r 5a,z)5n̂(r 5b,z)5êz , as depicted in Fig. 1. The
director is given byn̂(r ,t)5cosuêr1sinuêz and the velocity

vW (rW,t) field readsvW 5v(r ,t)êz , whereêr and êz are the unit
cylindrical vectors.
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In Ref. @12# we derived the coupled dynamics for the T
optical mode,Hf(rW,t), and the orientational,u(rW,t), field in
a cylindrical fiber in a steady state by taking into accou
explicitly retarded effects, namely
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FIG. 1. Schematics of a laser beam propagating through a n
atic liquid crystal cylindrical waveguide. The TM modes are sho
explicitly.
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Here g1 is the reorientational viscosity andd i l is the usual
Kronecker delta;ea[e i2e' is the dielectric anisotropy
where e i , e' denote, respectively, the dielectric consta
parallel and perpendicular to the long axis of the molecu
andl[2g2 /g1 is the ratio of two nematic viscosities. If th
reorientation process is isothermal,F in Eq. ~2! denotes de
Helmholtz free energy that for the present model is@13#
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The dimensionless parameterq2[e0E0
2a2/K is equal to the

ratio between the electric field energy density and the ela
energy density of the nematic.K[K15K25K3 is the iso-
thermal elastic constant in the equal elastic constants
proximation and the asterik~* ! indicates complex conjuga
tion. In Eq.~3! →Ea(rW,t) stands for a dimensionless electr
field defined by the following nonlocal and retarded relatio

EWa~rW,t !5
q

e0
E dt8E t
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ea

e'e i
~ t92t8!n̂n̂•¹W 3HW ~r 8W ,t8!,

~4!

obtained by substitution of the displacement fieldDW (rW,t) in
terms ofHW (rW,t), by using the Ampe`re-Maxwell law without
sources@12#. Herez[z/a, x[r /a, Hf[Hf /(ce0E0) with
c51/Am0e0, wherem0 ande0 are the magnetic permeabilit
and dielectric permittivity of free space. The coupling b
tween the director and the TM modes is represented by
term of orderq2 in Eq. ~3!.

In the present paper we generalize these results by
sidering the full nematodynamics that must include
coupled set of equations forn̂ andvW . Using the formulation
in Ref. @14# the equation of motion for a nematic is given b
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Hered/dt stands for the material derivative operator and
stress tensor is given by P j l 5]F/]@(]/]xj )nl #
2nrnl]F/]@(]/]xj )nr #. As usual, the symmetric gradien
velocity tensor is v j l 5@(]/]xj )v l1(]/]xl)v j #/2 and hi
5(d im2ninm)dF/dnm , where dF/dnm denotes the varia-
tional derivative ofF. The kinetic coefficientsh1 , h̄2 , h3
are the Harvard viscosities andE0 is the amplitude of the
incident field.

We shall now rewrite Eqs.~2!, ~3!, and~5! for the weakly
nonlinear TM modes calculated in Ref.@12# for which q
!1. Since the torques induced byE r and E f are propor-
tional to q and since the magnetic susceptibility is mu
smaller than the electric one for a thermotropic, it is reas
able to expect that if the initial flow is axial it will remain s
as time evolves. Also, the Zocher stresses that could a
from gradients in the magnetic field are negligible in th
regime. Furthermore, since the fluid is incompressible a
the process is isothermal, the pressurep5p(r,T) is con-
stant. Therefore, in the absence of external pressure grad
substitution of the explicit forms forn̂ and vW into Eqs.~2!,
~5!, and~3! leads to
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The usual procedure to solve Eqs.~6! and~7! is by using the
approximations of negligible inertia@1# and minimal cou-
pling @15#, where the rapidly varying hydrodynamic velocit
is considered to be a slow variable that follows instan
neously the director dynamics. These approximations lea
an amplitude equation for the orientation with an effecti
viscosity @6#. However, in the present model we have
even faster variable thanvz , namely, the TM mode
Hf(z,x,t), which couples to bothu(z,x,t) and vz(z,x,t),
according to Eqs.~1!, ~6!, and~7!. Thus, it will be inconsis-
tent to setdvz /dt50 and instead, since we are consideri
weakly nonlinear TM modes only, we solve Eqs.~1! and~6!
iteratively in powers ofq. To this end we assume the follow
ing expansions foru andHf in powers ofq:

u~z,x,t !5u (o)1q2uA~J,T!U~x,v!u2u (1)~z,x,t !1•••, ~9!
1-2
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vz~z,x,t !5q2uA~J,T!U~x,v!u2vz
(1)~z,r ,t !1•••,

~10!

Hf~x,z,t !5qUfS x,v01 iq
]

]TDA~J,T!1q2U (2)1c.c.

1•••. ~11!

Here A(J,T) is a slowly varying function of the variable
J[qz andT[qt , which represents the envelope of a n
row wave packet of widthq5(v2v0)/v0 with central fre-
quencyv0 . u (n) andvz

(n) , with n50,1, . . . ,denote the suc-
cessive corrections of ordern that satisfy the strong
anchoring homeotropic boundary conditions,u(x51)5u(x
5b/a)50. Uf(x,v0) is the linear solution forHf given by
@12,16#

Uf~x,v0!5J1
2SAecS v0a

c D 2

2b2a2D
3A p

2sax
exp~2 ibaz2sax!, ~12!

with s5Ae i@b2/e'2(v0 /c)2# and where J1(x) is the
Bessel function of order 1 andb is the propagation param
eter which takes the values given in Table I in Ref.@12#.
U (n), n52,3, . . . in Eq.~11!, are the contributions due to th
higher order optical harmonics that might be generated
the nonlinearities of Eqs.~1! and~6!. Note that the presenc
of higher powers ofq in Eq. ~11!, implies that the contribu-
05170
-

y

tion of the higher order harmonics is smaller than the do
nant term that is itself a small amplitude narrow wa
packet.

Inserting expression~9! into Eq. ~11! and expanding in
powers of q it is straightforward to rewrite the latter equa
tion as@12#

L̂~b,v,x!Hf1q2F̂~Hf!50, ~13!

where the linear and nonlinear operatorsL̂, F̂ are defined,
respectively, by
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The governing equation for the first order solutio
u (1)(v,x,z) andvz

(1)(v,x,z) can be found by inserting Eqs
~9!, ~10!, and~12! into Eq. ~6!, this leads to
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whereU(r ,t)5*0
`(ApA2 /A2x)exp(2sx)eivtdv . It is convenient to rewrite these equations in the form
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To solve these equations we define the following Fourier transform:

ũ (1)~kW ,v!5E drWdteikW •rW2 ivteifu (1)~rW,t !, ~20!

v z̃
(1)~kW ,v!5E drWdteikW •rW2 ivteifvz

(1)~rW,t !, ~21!
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to obtain
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22lk2!k2ũ (1)~kW ,v!2
4eaba

p2e'e i
S~kW 1 ,v1!S* ~kW 2 ,v2!D , ~22!
e

ne

e

ons.

s

-

and

S i
g1a2v

K
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where S(kW ,v) is the Fourier’s transform ofeif/2U(r ,t).
Solving Eqs.~22! and ~23! for ũ (1)(kW ,v) we find that

ũ (1)~kW ,v!52
4eaba

p2e'e i
E dv dkW

S~kW 1 ,v1!S* ~kW 2 ,v2!

G~kW ,v!

3d~kW 2kW 12kW 2!d~v2v12v2! ~24!

with

G~kW ,v!21

[

ivr1@h11g1#
k r

2

a2

S ig1a2v

K
1k2D S ivr1

h1

a2
k r

2D 1
k r

2

2a2
g1~k r

22lk2!

.

~25!

Note that this expression exhibits explicitly the coupling b
tween the two optical wave vectorskW 1 andkW 2, and the ori-
entational wave vectorkW that for some cases, as the o
considered below, can be simplified.
-

To follow the dynamics of the envelopeA(J,T) we sub-
stitute Eq.~11! into Eq. ~13! and identify the Fourier vari-
ables iba[ ib0a1q]/]J11q2]/]J2 and 2 iv[2 iv0

1q]/]T, in consistency with the definition of a narrow wav
packet, whereJn[qn21J5qnz with n51,2,3, . . . are the
spatial scales associated with upper harmonics contributi
Expanding the resulting expression up to third order inq,
that is,

05L̂S ib0a1q
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]J2
1q3

]

]J3

2 iv01q
]

]TDHf~x,z,t !1q2F̂„Hf~x,z,t !…, ~26!

and grouping together terms of the same order inq, we get
equations for A(J,T) for each of the spatial scale
J,J1 ,J2. If the equations for the lower scalesJ andJ1are
inserted into the equation forJ2 we arrive at the NLS equa
tion @12#,

q3:2
]A

]J2
1 ia

d2b

dv2

]2A

]T2
1 i n̄2AuAu250, ~27!

where the dimensionless refraction indexn̄2[Kn2 /e0a2 is
given by
in
et
n̄25
ea

e i
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x
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du (1)~x!
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dx
,

Uf~x,v0!L G Y ^Uf~x,v0!,Uf~x,v0!&. ~28!

Here the angular brackets denote integration overx from x51 to x5b/a. To calculate this integral we must first obta
u (1)(x,v), which stems from the inverse Fourier transform of Eq.~24!. For the case of the narrow optical wave pack
considered here we have to take into account the two possible couplings, namely,kW 11kW 252k i

W with v12v250 or v1
1v250. Thus, Eq.~24! may be approximated as
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where we have takene(k0 ,2v0)5e(k0 ,v0) by assuming
absorption to be negligible and wherea1[K/g1a2v0
and a2[h1 /v0ra2. It is straightforward to show thata1
and a2 are small by substituting numerical values for
typical nematic, namely, K510211N, g1595
31023kg s21 m21, h1512131023 kg s21 m21, r5103

kg/m3 and an optical frequency,v053.831015 rad/s. This
yields the valuesa151.331029 anda259.231028, hence
the first term of Eq.~29! has a negligible real part and
much smaller than the second term. Taking the inverse
tial Fourier transform of the latter equation we obtain

u (1)~x,v!5 ia1

2eaba

pe'e i

J1
2SAecS v0a

c D 2

2b2a2D
x

3exp~22sax!1
@h11g1#

S h11
g1

2
2

g1

2
l D

3

baeaJ1
2SAecS v0a

c D 2

2b2a2D
pe'e ix~a22b2!

3$~a22b2!esa(12x)1~b22x2a2!

1es(a2b)a2~12x2!%, ~30!

where the real part ofu (1)(x,v) is proportional to the one
obtained in the absence of dissipation@12# that satisfies the
hard anchoring homeotropic boundary conditions giv
above. Insertingu (1)(x,v) into Eq. ~28! yields

n̄25
1

4
ea

2ba3
@h11g1#

S h11
g1

2
2
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2
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4SAecS v0a

c D 2
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e'e i
J1

4SAecS v0a

c D 2

2b2a2D
3

e26bs2S a

bD 2

e26sa
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a

b
e22sa

, ~31!

which is a complex nonlinear refraction index,n̄25n̄2
r

1 i n̄2
i . It should be noticed, on the one hand, that the dir

comparison of the real partn̄2
r and the ones obtained forn̄2

in the absence of dissipation and hydrodynamical effe
05170
a-

n

t

s,

given by Eqs.~40! and ~21! of Refs. @7,12#, respectively,
show that the only difference between them is the fac
(h11g1)/@h11g1/22(g1/2l)#. For the material paramete
values given above this factor has the value 1.75. On
other hand, the imaginary partn̄2

i of n̄2 remains the same a

that found in Ref.@12#. Thus, the values ofn̄2
i as given in

Table I of Ref.@12# do not change with the hydrodynamic
effects, while the values ofn̄2

r from the same table have to b
increased by 1.75.

Similarly, as in absence of hydrodynamical effects@7#, we
can take into account this lossy contribution as a perturba
term in the NLS equation~27!. Indeed, Eq.~27! can be re-
written as the GNLS equation

]A

]J̄̄
21 i

]2A

]T̄2
2 i uAu2A2āuAu2A50, ~32!

with ā5n̄2
i /n̄2

r . By considering the last term as a perturb
tion, it was found the soliton-type solution@10,12#

A52h sech@ T̄2Z̄~dk/dv!Z0 /T0#

3exp@ ik~v0!Z0Z̄2 iv0T0T̄#, ~33!

whereh is given byh(Z̄)51/A1116āZ̄/3, and where the
initial conditionh(Z̄50)51 has been imposed. This expre
sion shows that dissipation due to flow reorientation ma
the soliton amplitudeh decrease with the distance;h falls
half its initial amplitudeA0 when the soliton has traveled th
distanceZ̄a59/(16ā).

Let us now estimate the changes in the length and t
scales,Z052/n2

r A0
2, T0

25(a/n2
r A0

2)d2b/dv0
2, of this pulse

owing to the presence of hydrodynamic flow. For a 500 m
laser atl50.5 mm with a beam waist of 10mm, the field
amplitude isA0

251.93106 V/m. Then, by using the materia
constants given above and for the mode withba5229.59,
this leads to the following spatial and temporal scales for
pulse,Z052.431025 m andT050.12310212 s.

Finally, becausen̄2
r in ā increases by a factor of 1.75, th

characteristic distance over which the soliton loses half
initial amplitudeA0, given by zd5Z0Za , leads to a larger
value given byzd

nem51.92Km due to hydrodynamical effect
@5#.

Summarizing, we have derived a generalized nonlin
Schröedinger equation for the amplitude of a wave packet
TM modes propagating through a cylindrical nematic wav
guide by taking into account dissipation in the nematic’s
orientation and hydrodynamical effects. For the solitonli
solution of this equation we found an increase of a fac
1.75 in both, the penetration length and the nonlinear refr
tion index.
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